New Vault OSS Now Includes Multi-factor Authentication! Learn more
  • Overview
    • Automated PKI Infrastructure
    • Data Encryption & Tokenization
    • Database Credential Rotation
    • Dynamic Secrets
    • Identity-based Access
    • Key Management
    • Kubernetes Secrets
    • Secrets Management
  • Enterprise
  • Tutorials
  • Docs
  • API
  • Community
GitHubTry Cloud
Download
    • v1.10.x (latest)
    • v1.9.x
    • v1.8.x
    • v1.7.x
    • v1.6.x
    • v1.5.x
    • v1.4.x
  • What is Vault?
  • Use Cases
    • CLI Quick Start
    • HCP Quick Start
    • Developer Quick Start

  • Browser Support
  • Installing Vault
    • Overview
    • Architecture
    • High Availability
    • Integrated Storage
    • Security Model
    • Telemetry
    • Token Authentication
    • Key Rotation
    • Replication
    • Limits and Maximums
    • Overview
    • 'Dev' Server
    • Seal/Unseal
    • Namespace API Lock
    • Lease, Renew, and Revoke
    • Authentication
    • Tokens
    • Identity
    • OIDC Provider
    • Response Wrapping
    • Policies
    • Password Policies
    • Username Templating
    • High Availability
    • Storage
      • Overview
      • Autopilot
    • PGP, GnuPG, and Keybase
    • Recovery Mode
    • Resource Quotas
      • Overview
      • FAQ
    • Transform
    • Mount Migration
    • Overview
      • Overview
      • TCP
    • replication
      • Overview
      • AliCloud KMS
      • AWS KMS
      • Azure Key Vault
      • GCP Cloud KMS
      • OCI KMS
      • HSM PKCS11 ENT
      • Vault Transit
    • sentinel
      • Overview
      • Consul
      • Kubernetes
      • Overview
      • Aerospike
      • Alicloud OSS
      • Azure
      • Cassandra
      • CockroachDB
      • Consul
      • CouchDB
      • DynamoDB
      • Etcd
      • Filesystem
      • FoundationDB
      • Google Cloud Spanner
      • Google Cloud Storage
      • In-Memory
      • Manta
      • MSSQL
      • MySQL
      • OCI Object Storage
      • PostgreSQL
      • Integrated Storage (Raft)
      • S3
      • Swift
      • Zookeeper
    • telemetry
    • ui
    • Log Completed Requests
    • Entropy Augmentation ENT
    • kms_library ENT
    • Overview
    • agent
      • Overview
      • disable
      • enable
      • list
      • Overview
      • disable
      • enable
      • help
      • list
      • move
      • tune
    • debug
    • delete
      • Overview
      • delete
      • destroy
      • enable-versioning
      • get
      • list
      • metadata
      • patch
      • put
      • rollback
      • undelete
      • Overview
      • lookup
      • renew
      • revoke
      • Overview
      • get
      • inspect
    • list
    • login
    • monitor
    • namespace
      • Overview
      • diagnose
      • generate-root
      • init
      • key-status
      • members
      • migrate
      • raft
      • rekey
      • rotate
      • seal
      • step-down
      • unseal
      • usage
    • path-help
      • Overview
      • deregister
      • info
      • list
      • register
      • reload
      • Overview
      • delete
      • fmt
      • list
      • read
      • write
    • read
      • Overview
      • disable
      • enable
      • list
      • move
      • tune
    • server
    • ssh
    • status
      • Overview
      • capabilities
      • create
      • lookup
      • renew
      • revoke
    • unwrap
    • version
    • version-history
    • write
    • Token Helpers
    • Overview
      • Overview
        • Overview
        • AliCloud
        • AppRole
        • AWS
        • Azure
        • Cert
        • CF
        • GCP
        • JWT
        • Kerberos
        • Kubernetes
        • Overview
        • File
      • Overview
        • Overview
        • Kubernetes
    • Templates
    • Windows service

    • Overview
    • Active Directory
    • AliCloud
    • AWS
    • Azure
    • Consul
    • Cubbyhole
      • Overview
      • Cassandra
      • Couchbase
      • Elasticsearch
      • HanaDB
      • IBM Db2
      • InfluxDB
      • MongoDB
      • MongoDB Atlas
      • MSSQL
      • MySQL/MariaDB
      • Oracle
      • PostgreSQL
      • Redshift
      • Snowflake
      • Custom
    • Google Cloud
    • Google Cloud KMS
      • Overview
      • Azure Key Vault
      • AWS KMS
      • GCP Cloud KMS
    • KMIP ENTERPRISE
      • Overview
      • K/V Version 1
      • K/V Version 2
      • Overview
      • Identity Tokens
      • OIDC Identity Provider
    • MongoDB Atlas
    • Nomad
    • OpenLDAP
    • PKI (Certificates)
    • RabbitMQ
      • Overview
      • Signed Certificates
      • SSH OTP
      • Dynamic Key
    • Terraform Cloud
    • TOTP
      • Overview
      • FF3-1 Tweak Usage
      • Tokenization Transform ENTERPRISE
    • Transit
    • Venafi (Certificates)
    • Overview
    • AppRole
    • AliCloud
    • AWS
    • Azure
    • Cloud Foundry
    • GitHub
    • Google Cloud
      • Overview
      • OIDC Providers
    • Kerberos
    • Kubernetes
    • LDAP
      • Overview
      • FAQ
    • Oracle Cloud Infrastructure
    • Okta
    • RADIUS
    • TLS Certificates
    • Tokens
    • Username & Password

    • App ID DEPRECATED
    • MFA LEGACY / UNSUPPORTED
    • Overview
    • File
    • Syslog
    • Socket
    • Overview
    • Plugin Architecture
    • Plugin Development
    • Plugin Management
    • Plugin Portal
  • Vault Integration Program
  • Troubleshoot

    • Overview
      • Overview
      • Agent Injector vs. Vault CSI Provider
        • Overview
        • Running Vault
        • Enterprise Licensing
        • Running Vault on OpenShift
        • Configuration
          • Overview
          • Development
          • Standalone with Load Balanced UI
          • Standalone with TLS
          • Standalone with Audit Storage
          • External Vault
          • Using Kubernetes Auth Method
          • HA Cluster with Consul
          • HA Cluster with Raft
          • HA Enterprise Cluster with Raft
          • HA Enterprise DR Clusters with Raft
          • HA Enterprise Performance Clusters with Raft
          • Vault Agent Injector TLS Configuration
          • Vault Agent Injector TLS with Cert-Manager
        • Overview
        • Annotations
        • Installation
        • Examples
        • Overview
        • Installation
        • Configurations
        • Examples
      • Overview
      • Vault Lambda Extension
      • Running Vault
      • Overview
      • Installation
      • Configuration
      • Troubleshooting
      • Overview
      • Installation
      • Troubleshooting

    • Overview
    • Upgrade Plugins
    • Upgrade to 1.10.x
    • Upgrade to 1.9.x
    • Upgrade to 1.8.x
    • Upgrade to 1.7.x
    • Upgrade to 1.6.3
    • Upgrade to 1.6.2
    • Upgrade to 1.6.1
    • Upgrade to 1.6.0
    • Upgrade to 1.5.3
    • Upgrade to 1.5.2
    • Upgrade to 1.5.1
    • Upgrade to 1.5.0
    • Upgrade to 1.4.6
    • Upgrade to 1.4.5
    • Upgrade to 1.4.4
    • Upgrade to 1.4.1
    • Upgrade to 1.4.0
    • Upgrade to 1.3.10
    • Upgrade to 1.3.9
    • Upgrade to 1.3.8
    • Upgrade to 1.3.5
    • Upgrade to 1.3.4
    • Upgrade to 1.3.3
    • Upgrade to 1.3.2
    • Upgrade to 1.3.0
    • Upgrade to 1.2.7
    • Upgrade to 1.2.6
    • Upgrade to 1.2.5
    • Upgrade to 1.2.4
    • Upgrade to 1.2.1
    • Upgrade to 1.2.0
    • Upgrade to 1.1.2
    • Upgrade to 1.1.1
    • Upgrade to 1.1.0
    • Upgrade to 1.0.0
    • Upgrade to 0.11.6
    • Upgrade to 0.11.2
    • Upgrade to 0.11.0
    • Upgrade to 0.10.4
    • Upgrade to 0.10.2
    • Upgrade to 0.10.0
    • Upgrade to 0.9.6
    • Upgrade to 0.9.3
    • Upgrade to 0.9.2
    • Upgrade to 0.9.1
    • Upgrade to 0.9.0
    • Upgrade to 0.8.0
    • Upgrade to 0.7.0
    • Upgrade to 0.6.4
    • Upgrade to 0.6.3
    • Upgrade to 0.6.2
    • Upgrade to 0.6.1
    • Upgrade to 0.6.0
    • Upgrade to 0.5.1
    • Upgrade to 0.5.0

    • Overview
    • 1.10.0
    • 1.9.0
    • 1.8.0
    • 1.7.0
    • 1.6.0
    • 1.5.0

    • Overview
    • FAQ

    • Overview
    • Feature Deprecation Notice and Plans
    • License
    • Client Count
    • Login MFA
    • Server Side Consistent Token

  • Glossary

    • Overview
      • Overview
      • Autoloading
      • FAQ
    • Replication
      • Overview
      • Behavioral Changes
      • Security
    • Automated Integrated Storage Snapshots
    • Lease Count Quotas
    • Entropy Augmentation
    • Seal Wrap / FIPS 140-2
    • Namespaces
    • Performance Standbys
    • Eventual Consistency
    • Control Groups
    • Managed Keys
      • Overview
      • Duo MFA
      • Okta MFA
      • PingID MFA
      • TOTP MFA
      • Overview
      • Examples
      • Properties
    • HCP Vault
Type '/' to Search

»Key Rotation

Vault has multiple encryption keys that are used for various purposes. These keys support rotation so that they can be periodically changed or in response to a potential leak or compromise. It is useful to first understand the high-level architecture before learning about key rotation.

As a review, Vault starts in a sealed state. Vault is unsealed by providing the unseal keys. By default, Vault uses a technique known as Shamir's secret sharing algorithm to split the root key into 5 shares, any 3 of which are required to reconstruct the master key. The root key is used to protect the encryption key, which is ultimately used to protect data written to the storage backend.

Vault Shamir Secret Sharing Algorithm

To support key rotation, we need to support changing the unseal keys, root key, and the backend encryption key. We split this into two separate operations, rekey and rotate.

The rekey operation is used to generate a new root key. When this is being done, it is possible to change the parameters of the key splitting, so that the number of shares and the threshold required to unseal can be changed. To perform a rekey a threshold of the current unseal keys must be provided. This is to prevent a single malicious operator from performing a rekey and invalidating the existing root key.

Performing a rekey is fairly straightforward. The rekey operation must be initialized with the new parameters for the split and threshold. Once initialized, the current unseal keys must be provided until the threshold is met. Once met, Vault will generate the new master key, perform the splitting, and re-encrypt the encryption key with the new root key. The new unseal keys are then provided to the operator, and the old unseal keys are no longer usable.

The rotate operation is used to change the encryption key used to protect data written to the storage backend. This key is never provided or visible to operators, who only have unseal keys. This simplifies the rotation, as it does not require the current key holders unlike the rekey operation. When rotate is triggered, a new encryption key is generated and added to a keyring. All new values written to the storage backend are encrypted with the new key. Old values written with previous encryption keys can still be decrypted since older keys are saved in the keyring. This allows key rotation to be done online, without an expensive re-encryption process.

Both the rekey and rotate operations can be done online and in a highly available configuration. Only the active Vault instance can perform either of the operations but standby instances can still assume an active role after either operation. This is done by providing an online upgrade path for standby instances. If the current encryption key is N and a rotation installs N+1, Vault creates a special "upgrade" key, which provides the N+1 encryption key protected by the N key. This upgrade key is only available for a few minutes enabling standby instances to do a periodic check for upgrades. This allows standby instances to update their keys and stay in-sync with the active Vault without requiring operators to perform another unseal.

The rotate/config endpoint is used to configure the number of operations or time interval between automatic rotations of the backend encryption key.

»NIST Rotation Guidance

Periodic rotation of the encryption keys is recommended, even in the absence of compromise. Due to the nature of the AES-256-GCM encryption used, keys should be rotated before approximately 232 encryptions have been performed, following the guidelines of NIST publication 800-38D.

As of Vault 1.7, Vault will automatically rotate the backend encryption key prior to reaching 232 encryption operations by default.

Operators can estimate the number of encryptions by summing the following:

  • The vault.barrier.put telemetry metric.
  • The vault.token.creation metric where the token_type label is batch.
  • The merkle.flushDirty.num_pages metric.
  • The WAL index.
github logoEdit this page
DocsAPILearnCommunityPrivacySecurityPress KitConsent Manager